超导量子芯片上“搭积木” 拓扑时间晶体被首次实现

本文转自:科技日报
超导量子芯片上“搭积木” 拓扑时间晶体被首次实现
文章图片

文章图片

数字量子模拟拓扑时间晶体概念图 。科研团队供图
洪恒飞 周炜 吴瑶瑶 科技日报采访人员 江耘
人们日常熟悉的晶体 , 比如食盐、矿石等 , 构成它们的原子在空间排列上呈一定的周期性变化 , 而时间晶体试图把晶体的特征拓展到时间维度 , 它在时间上也呈现一定的周期性变化——这是2012年诺贝尔物理学奖获得者、麻省理工学院教授弗兰克·维尔切克(Frank Wilczek)曾提出时间晶体的构想 。围绕时间晶体这一概念 , 一些重要的理论认知和实验探索相继涌现 。
7月21日 , 《自然》杂志发表了由浙江大学物理学院王震、王浩华研究组与清华大学交叉信息研究院邓东灵研究组等合作的研究成果 , 科研人员在超导量子芯片上首次采用全数字化量子模拟方式实现了一种全新的物质状态——拓扑时间晶体 。
论文通讯作者之一、浙大物理学院王震研究员介绍 , 拓扑时间晶体是一种新的非平衡态物质 , 研究人员成功观测到了它的边缘因拓扑保护而呈现出离散时间晶体的行为(Floquet对称保护拓扑相) 。这一研究表明 , 超导量子芯片上使用数字化量子模拟的方法 , 有望被用于探索更多的物理学前沿问题 。
寻找时间晶体过程中另辟蹊径
根据联合团队绘制的数字量子模拟拓扑时间晶体概念图显示 , 超导量子芯片内部好比一个多姿多彩的量子世界 , 科学家在这个量子世界中构建新奇的拓扑时间晶体:规则排布的晶体代表保护拓扑的对称性 , 旋转的指针代表时间维度 , 中间不断流出的数字代表数字模拟……
关于时间晶体 , 在理论物理方面 , 有科学家曾提出离散时间晶体的概念 , 并提出了在一类非平衡态系统——量子多体局域化系统中“创造”时间晶体的理论模型;在实验方面 , 2017年-2018年年间 , 国际上分别有研究团队在离子阱平台、金刚石色心平台和核磁共振量子平台上实现了离散时间晶体 。
类比钟表的指针转过一圈后又会回到初始的位置 , 时间晶体的特殊之处在于 , 它的周期性重复是自然且稳定的“基态” , 即物质处于能量最低时的状态 。王震解释说 , “可以理解为时间晶体的‘天性’就是周期性变化的 , 类似于频闪或者呼吸 。而且并不需要像钟表运行那样需要消耗能量 。”
两年前 , 清华大学邓东灵教授开始构思一种新的时间晶体 , 尝试将拓扑的概念引入时间晶体 , 通过与浙大超导量子计算团队开展合作 , 尝试在超导量子芯片上创造这类全新的时间晶体 。
“常规的时间晶体已在某些实验平台中实现 , 我们想尝试别人没有做过的 。当清华团队提出想做‘拓扑时间晶体’的想法时 , 我们觉得很有吸引力 , 我们的超导量子计算平台来可以试一试 。”王震说 。
联合团队基于浙江大学杭州国际科创中心量子计算创新工坊发布的“天目1号” 超导量子芯片开展实验 。该芯片由研究团队依托于浙江大学微纳加工中心自主制作 , 芯片上比特平均相干时间破一百微秒 , 达到国际先进水平 , 采用较易扩展的近邻连通架构 , 具备更高的编程灵活度 , 以执行更多种类的量子算法 , 可以应用于更多研究领域 。
打磨“全数字化模拟”这一利器
近年来 , 在解决经典计算机无法胜任的复杂问题方面 , 量子计算显示出越来越强大的能力 。科学家认为 , 在通向“通用型量子计算”的漫长道路上 , 首先会出现一批“专门型量子计算” ,帮助科学家研究特定的、专门的现象和问题 。