数据治理架构的总结与分析
本文转自:中国发展网
文章图片
文章图片
日前 , IDC正式发布《中国数据治理市场份额2021》报告 , 报告显示 , 中国数据治理平台市场2021年规模达23.9亿元 , 越来越多的行业和领域开始认识到数据治理的价值和必要性 。数据治理的市场将迎来高速增长期 。
由此可见 , 数据治理行业已经得到广泛接受和认可 , 同时 , 中国数据治理市场经过几十年的发展 , 市场需求已经发生了重大转变 , 企业内部的数据架构越来越复杂 , 对数据治理工作的方式方法提出了更高的要求 。
在数据治理项目中 , 制定数据治理架构是最核心的任务 , 好的数据治理架构可以确保数据治理的整体性 , 实现彻底、完善的数据治理 , 更好地达到数据治理的预期效果 。
由于数据治理的侧重点和视角不同 , 国内外相关行业对数据治理项目的整体架构方式也不尽相同 。其中 , 许多行业内知名公司和权威机构分别对数据治理的架构方式作出了总结:
1、国际数据管理协会(DAMA)数据治理框架
国际数据管理协会(DAMA)成立于1988年 , 他们在丰富的数据管理经验的基础上 , 提出了几乎最为完整的数据治理体系——著名的“飞轮”模型 , 它概括了数据管理的十大功能模块 , 涵盖了数据治理工作的核心领域 。
国际数据管理协会从数据治理生命周期角度开启研究 , 总结了数据管理的10个领域:数据治理、数据架构管理、数据开发、数据操作管理、数据安全管理、参考数据和主数据管理、数据仓库和商务智能管理、文档和内容管理、元数据管理、数据质量管理 , 并把“数据治理”放在核心地位(见图一) 。
文章图片
文章图片
而要进行有效的数据治理 , 需要将以上工作内容与DAMA总结的七大环境要素结合起来 , 并建立匹配关系 , 从而确保数据治理目标的实现和环境要素的配合贡献 。这七个环境要素分别是:目标和原则、活动、主要交付物、角色和责任、技术、实践和方法、组织和文化(见图二) 。图一DAMA数据管理框架
文章图片
文章图片
2、IBM数据治理框架图二 DAMA环境因素六边图
IBM也许是最早提出数据治理概念的公司 , 它凭借多年出色的IT咨询经验 , 以及大数据平台开发经历 , 提出了数据治理统一流程理论(The IBM Data Governance Unified Process) 。
IBM数据治理委员会在构建数据治理统一框架方面 , 提出了数据治理的要素模型 , 包含成果、支持条件、核心规程和支持规程四个层次(见图三) 。
文章图片
文章图片
从图中可以看出:平衡和考量数据治理项目的风险合规性以及其能为企业带来的价值 , 是影响项目成果的主要因素;建立完备的组织、形成统一的意识、制定恰当的策略、实施周到的管理工作是项目成功必不可少的支持条件;提升数据质量、做好生命周期管理、保证数据安全是数据治理项目的核心规程;系统体系结构设计 , 元数据梳理并形成统一资源目录 , 数据的合规、内控、审计流程是数据治理项目的支持规程 。
《中国面向人工智能的数据治理行业研究报告》中提到:数据治理架构核心包括数据标准管理、数据集成管理、元数据管理、主数据管理、数据资产管理、数据质量管理、数据模型管理、数据服务与数据安全管理模块 。依托于企业对数据治理的侧重点不同 , 数据治理体系与架构也会根据企业所在的行业特点、经营性质及信息化程度的不同而有所差异 。在实际设计时 , 企业应从实际需求出发 , 设计搭建适合自身情况的数据治理架构 。
- 特斯拉被曝美国自动驾驶团队约200人被裁,涉数据标注岗位
- 西北大学科学家运用新技术采集文物数据 兵马俑扫描、建模时间从半天缩短至10分钟
- 资产管理系统平台建立资产管理数据库,实现资产动态长效监管
- 浙江首个聚集模式边缘数据中心站在金华建成并投运
- 数据治理:主数据管理的价值与局限
- 数据底座+AI助力 让语言教研拥抱“元宇宙”
- 20年老牌CPU厂商转型!RISC-V架构新U瓜熟蒂落
- intelarc锐炫显卡官方数据覆盖17款游戏
- 我国四成以上主要工业产品产量世界第一(新数据 新看点)
- 湖南倡议:搭建情报信息“数智平台”,融通“数据孤岛”